
Dimitra Giannakopoulou and Corina Păsăreanu
CMU / NASA Ames Research Center

Automated
Component-Based

Verification

!   component-based verification, for increased scalability, at design level
!   early detection of integration problems
!   use design level artifacts to improve/aid coding and testing

compositional
verification

testing design coding requirements deployment

C1 C2

C1

C2

M1

M2

models implementations

cost of detecting/fixing defects increases
integration issues handled early

component-based development

structure

part 1 (Dimitra)
assume-guarantee reasoning
computing assumptions
learning assumptions
discussion

part 2 (Corina)
multiple components
alphabet refinement
case studies
discussion

lunch

part 3 (Dimitra)
component interfaces
compositional JavaPathfinfer
examples
discussion

part 4 (Corina)
reasoning about code
abstraction
related work
conclusion

model checking

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

program / model

property
always(ϕ orψ)

model checker

YES (property holds)
NO + counterexample:

(provides a violating execution)

model checking vs. testing

model checking testing

compositional
verification

collaborators

Prof. Howard Barringer (Univ. of Manchester)
Colin Blundell (Upenn, IBM Research)
Jamieson Cobleigh (UMass, MathWorks)
Michael Emmi (UCLA)
Mihaela Gheorgiu (Univ. of Toronto, JPL)
Chang-Seo Park (UC Berkeley)
Suzette Person (Univ. of Nebraska, NASA Langley)
Rishabh Singh (MIT)

compositional verification

M2

M1

A

satisfies P?

!   check P on entire system: too many states!
!   use system’s natural decomposition into

components to break-up the verification
task

!   check components in isolation:

does system made up of M1 and M2 satisfy property P?

does M1 satisfy P?

“when we try to pick out anything by itself, we find
it hitched to everything else in the universe”

John Muir

assume-guarantee reasoning

“discharge” the
assumption

1.  〈A〉 M1 〈P〉
2.  〈true〉 M2 〈A〉

〈true〉 M1 || M2 〈P〉

M2

M1

A

satisfies P?

introduces assumptions / reasons about triples:

〈A〉 M 〈P〉 is true if whenever M is part of a
system that satisfies A, then the system must
also guarantee P

simplest assume-guarantee rule (ASYM):

examples of assumptions

!   will not invoke “close” on a file if “open” has not previously
been invoked

!   accesses to shared variable “X” must be protected by lock “L”
!   (rover executive) whenever thread “A” reads variable “V”, no

other thread can read “V” before thread “A” clears it first
!   (spacecraft flight phases) a docking maneuver can only be

invoked if the launch abort system has previously been
jettisoned from the spacecraft

assume-guarantee reasoning

how do we come up
with the assumption?

formalisms

!   components modeled as finite state machines (FSM)
–  FSMs assembled with parallel composition operator “||”

•  synchronizes shared actions, interleaves remaining actions

!   a safety property P is a FSM
–  P describes all legal behaviors in terms of its alphabet

–  Perr – complement of P
•  determinize & complete P with an “error” state;
•  bad behaviors lead to error

–  component M satisfies P iff error state unreachable in (M || Perr)

!   assume-guarantee reasoning
–  assumptions and guarantees are FSMs
–  〈A〉 M 〈P〉 holds iff error state unreachable in (A || M || Perr)

example

Input Output
in send

ack

out
Input

 in send

ack

Output
 out send

ack

require in and out to alternate (property Order)

Ordererr in

 out

 in out

parallel composition

Input
 in send

ack

Output
 out send

ack

||

property satisfaction

||

Ordererr in

 out

 in out

Input
 in send

ack

crex. 1: (I0, O0) out (I0, Oerror)
crex. 2: (I0, O0) in (I1, O1) send (I2, O1) out (I2, O0) out (I2, Oerror)

0 1 2

0 1

assume-guarantee reasoning

||

Ordererr in

 out

 in out

Input
 in send

ack

send

out
send

ack

Assumption

crex 1: (I0, A0, O0) out X
crex 2: (I0, A0, O0) in (I1, A0, O1) send (I2, A1, O1) out (I2, A0, O0) out X

0 1 2

1 0

1 0

the weakest assumption

!   given component M, property P, and the interface of M
with its environment, generate the weakest environment
assumption WA such that: 〈WA〉 M 〈P〉 holds

!  weakest means that for all environments E:

〈true〉 M || E 〈P〉 IFF 〈true〉 E 〈WA〉

weakest assumption in AG reasoning

〈WA〉 M1 〈P〉 holds (WA could be false)
〈true〉 M2 〈WA〉 holds implies 〈true〉 M1 || M2 〈P〉 holds
〈true〉 M2 〈WA〉 not holds implies 〈true〉 M1 || M2 〈P〉 not holds

1.  〈A〉 M1 〈P〉
2.  〈true〉 M2 〈A〉

〈true〉 M1 || M2 〈P〉

weakest assumption makes
rule complete

for all E, 〈true〉 M || E 〈P〉 IFF 〈true〉 E 〈WA〉

assumption generation [ASE’02]

STEP 1: composition, hiding,
minimization

property true!
(all environments)

STEP 2: backward propagation of
error along τ transitions

property false!
(all environments)

STEP 3: property extraction (subset
construction & completion) assumption

step 1: composition & hiding

send

ack

Input || Ordererr \ {in}

0 1 2 3

4

ack

send out

out

out

 τ	
out

out

out

 τ	

5

Input Output
in send

ack

out

in

in

step 2: error propagation

send

0 1 2 3

4

ack

send out

out

out

 τ	
out

out

out

 τ	

5

ack

ack

step 3: subset construction

send

0 1 2 3

4

send out

out

 τ	
out

out

out

ack

ack

step 3: subset construction

send

0 1 2 3

4

out

out

 τ	
out

out

send

ack

ack

step 3: property construction

3

out

out

out

send

ack
send

send
ack, send, out

ack

ack

0

4

weakest assumption in AG reasoning

〈WA〉 M1 〈P〉 holds (WA could be false)
〈true〉 M2 〈WA〉 holds implies 〈true〉 M1 || M2 〈P〉 holds
〈true〉 M2 〈WA〉 not holds implies 〈true〉 M1 || M2 〈P〉 not holds

1.  〈A〉 M1 〈P〉
2.  〈true〉 M2 〈A〉

〈true〉 M1 || M2 〈P〉

weakest assumption makes
rule complete

learning assumptions

iterative solution +
intermediate results

L* learns unknown regular language
U (over alphabet Σ) and produces
minimal DFA A such that L(A) = U

(L* originally proposed by Angluin)

(queries)
should word w be included in L(A)?

(conjectures)
here is an A – is L(A) = U?

yes / no

yes!
no: word w should (not) be in L(A)

the oracle L* learner

 query c ↑αA

〈true〉 M2 〈Ai〉

oracle for WA in assume-guarantee reasoning

L*

query: string s
〈s〉 M1 〈P〉

conjecture: Ai 〈Ai〉 M1 〈P〉

false+crex c c ↑αA

c ↑αA

(simulate s on M1 || Perr)

(model check)

(model check)

false+crex c

〈WA〉 M1 〈P〉 holds
〈true〉 M2 〈WA〉 holds implies 〈true〉 M1 || M2 〈P〉 holds
〈true〉 M2 〈WA〉 does not hold implies 〈true〉 M1 || M2 〈P〉 does not hold

true / false

true

P satisfied

P violated
true

false

1.  〈A〉 M1 〈P〉
2.  〈true〉 M2 〈A〉

〈true〉 M1 || M2 〈P〉

characteristics

!   terminates with minimal automaton A for U
!   generates DFA candidates Ai: |A1| < | A2| < … < |A|
!   produces at most n candidates, where n = |A|
!   # queries: O(kn2 + n logm),

–  m is size of largest counterexample, k is size of alphabet
!   for assume-guarantee reasoning, may terminate early with a

smaller assumption than the weakest

assumptions conjectured by L* are not comparable semantically

example

we check: 〈true〉 Input || Output 〈Order〉
M1 = Input, M2 = Output, P = Order

assumption alphabet: {send, out, ack}

Ordererr in

 out out in

Output
 send

ack

 out
 Input

 in

ack

 send

queries

E
Table T λ

S λ true

out false

S ⋅ Σ
ack
out
send
out, ack
out, out
out, send

S = set of prefixes
E = set of suffixes

true
false
true

false
false
false

Ordererr in

 out out in

 Input
 in

ack

 send
Output

 send

ack

 out

candidate construction

E
Table T λ

S λ true

out false

S ⋅ Σ
ack
out
send
out, ack
out, out
out, send

S = set of prefixes
E = set of suffixes

2 states – error state omitted

 ack
send

Assumption A1
true
false
true

false
false
false

Ordererr in

 out out in

 Input
 in

ack

 send
Output

 send

ack

 out

counterexamples add to S

conjectures

 ack
send

A1: Oracle 1:
〈A1〉 Input 〈Order〉

Counterexample:
c = 〈in,send,ack,in〉

Return to L*:
c↑ Σ = 〈send,ack〉

Oracle 1:
〈A2〉 Input 〈Order〉

True

Oracle 2:
〈 true〉 Output 〈A2〉

True

 property Order holds
on Input || Output

 ack

 send

 out, send

A2: Queries

Ordererr in

 out out in

Output
 send

ack

 out
 Input

 in

ack

 send

end of part 1

please ask LOTS of questions!

Automated
Component-Based

Verification

part II

Dimitra Giannakopoulou and Corina Păsăreanu
CMU / NASA Ames Research Center

recap from part I

!   Compositional Verification
!   Assume-guarantee reasoning
!   Weakest assumption
!   Learning framework for reasoning about 2 components

compositional verification

M2

M1

A

satisfies P?

!   Check P on entire system: too many states!
!   Use the natural decomposition of the system into its

components to break-up the verification task

!   Check components in isolation:
 Does M1 satisfy P?
–  Typically a component is designed to satisfy its

requirements in specific contexts / environments
!   Assume-guarantee reasoning:

–  Introduces assumption A representing M1’s “context”

Does system made up of M1 and M2 satisfy property P?

assume-guarantee reasoning

!   Simplest assume-guarantee rule – ASYM

“discharge” the
assumption

1.  〈A〉 M1 〈P〉
2.  〈true〉 M2 〈A〉

3.  〈true〉 M1 || M2 〈P〉

How do we come up with the assumption A?
(usually a difficult manual process)

Solution: synthesize A automatically

!   Reason about triples:
〈A〉 M 〈P〉
The formula is true if whenever M is part of a system that

satisfies A, then the system must also guarantee P

M2

M1

A

satisfies P?

the weakest assumption

!   Given component M, property P, and the interface of M with
its environment, generate the weakest environment
assumption WA such that: 〈WA〉 M 〈P〉 holds

!   Weakest means that for all environments E:

〈true〉 M || E 〈P〉 IFF 〈true〉 E 〈WA〉

assumption generation [ASE’02]

STEP 1: composition, hiding,
minimization

property true!
(all environments)

STEP 2: backward propagation of
error along τ transitions

property false!
(all environments)

STEP 3: property extraction (subset
construction & completion) assumption

learning for assume-guarantee reasoning

!   Use an off-the-shelf learning algorithm to build appropriate
assumption for rule ASYM

!   Process is iterative
!   Assumptions are generated by querying the system, and are

gradually refined
!   Queries are answered by model checking
!   Refinement is based on counterexamples obtained by model

checking
!   Termination is guaranteed

1.  〈A〉 M1 〈P〉
2.  〈true〉 M2 〈A〉

3.  〈true〉 M1 || M2 〈P〉

〈true〉 M2 〈Ai〉

learning assumptions
!   Use L* to generate candidate assumptions
!   αA = (αM1 ∪ αP) ∩ αM2

L*

query: string s
true

false

〈s〉 M1 〈P〉

conjecture: Ai
〈Ai〉 M1 〈P〉

〈c↑αA〉 M1 〈P〉

true

false + cex c

true

false

false + cex c

P holds in M1 || M2

P violated in M1 || M2

1.  〈A〉 M1 〈P〉
2.  〈true〉 M2 〈A〉

3.  〈true〉 M1 || M2 〈P〉

string c ↑αA

string c ↑αA

Model Checking

!   Guaranteed to terminate
!   Reaches weakest assumption or terminates earlier

true

part II

!   compositional verification
!   assume-guarantee reasoning
!   weakest assumption
!   learning framework for reasoning about 2 components

extensions:
!   reasoning about n > 2 components
!   symmetric and circular assume-guarantee rules
!   alphabet refinement

extension to n components

!   To check if M1 || M2 || … || Mn satisfies P
–  decompose it into M1 and M’2 = M2 || … || Mn
–  apply learning framework recursively for 2nd premise of rule
–  A plays the role of the property

!   At each recursive invocation for Mj and M’j = Mj+1 || … || Mn
–  use learning to compute Aj such that

•  〈Ai〉 Mj 〈Aj-1〉 is true
•  〈true〉 Mj+1 || … || Mn〈Aj〉 is true

1.  〈A〉 M1 〈P〉
2.  〈true〉 M2 || … || Mn 〈A〉

3.  〈true〉 M1 || M2 … || Mn 〈P〉

example

!   Model derived from Mars Exploration
Rover (MER) Resource Arbiter
–  Local management of resource

contention between resource
consumers (e.g. science instruments,
communication systems)

–  Consists of k user threads and one
server thread (arbiter)

!   Checked mutual exclusion between
resources
–  E.g. driving while capturing a camera

image are mutually incompatible

!   Compositional verification scaled to
>5 users vs. monolithic verification
ran out of memory [SPIN’06]

ARB

U5

U4

Request, Cancel
U3

U2

U1
Grant, Deny
 Rescind

Resource Arbiter

recursive invocation

!   Compute A1 … A5 s.t.
〈A1〉 U1 〈P〉
〈true〉 U2 || U3 || U4 || U5 || ARB 〈A1〉
 〈A2〉 U2 〈A1〉
 〈true〉 U3 || U4 || U5 || ARB 〈A2〉
 〈A3〉 U3 〈A2〉
 〈true〉 U4 || U5 || ARB 〈A2〉
 〈A4〉 U4 〈A3〉

 〈true〉 U5 || ARB 〈A4〉
 〈A5〉 U5 〈A4〉
 〈true〉 ARB 〈A5〉

!   Result:
〈true〉 U1 || .. || U5 || ARB 〈P〉

U1

U2

P

A2 A1

ARB

A1

U3

U4

A2

A4 A3

A3

U5 A5 A4

A5

symmetric rules: motivation

 ack,out,send

 ack

 send out

 ack

 send

 send

A4:

 ack

 send

 out, send

A2:
 ack
send

A1:

 ack
in

A1:
 ack

 in

 ack

A2:

 send

M1 = Input, M2 = Output, P = Order

M1 = Output, M2 = Input, P = Order

Ordererr in

 out out in

Output
 send

ack

 out
 Input

 in

ack

 send
 send

symmetric rules

!   Assumptions for both components at the same time
–  Early termination; smaller assumptions

!   Example symmetric rule – SYM

!   coAi = complement of Ai, for i=1,2
!   Requirements for alphabets:

–  αP ⊆ αM1 ∪ αM2; αAi ⊆ (αM1 ∩ αM2) ∪ αP, for i =1,2
!   The rule is sound and complete
!   Completeness needed to guarantee termination
!   Straightforward extension to n components

1.  〈A1〉 M1 〈P〉
2.  〈A2〉 M2 〈P〉

3.  L(coA1 || coA2) ⊆ L(P)

 〈true〉 M1 || M2 〈P〉

Ensure that any common
trace ruled out by both
assumptions satisfies P.

learning framework for rule SYM

L*

〈A1〉 M1 〈P〉

L*

〈A2〉 M2 〈P〉

A1 A2

false false

L(coA1 || coA2) ⊆ L(P)

 counterex.
analysis

true true

false
P holds in M1||M2

P violated in M1||M2

add counterex. add counterex.

 remove
counterex.

remove
counterex.

true

circular rule

!   Rule CIRC – from [Grumberg&Long – Concur’91]

!   Similar to rule ASYM applied recursively to 3 components
–  First and last component coincide
–  Hence learning framework similar

!   Straightforward extension to n components

1.  〈A1〉 M1 〈P〉
2.  〈A2〉 M2 〈 A1 〉

3.  〈true〉 M1 〈 A2 〉

 〈true〉 M1 || M2 〈P〉

assumption alphabet refinement

!   Rule ASYM
–  Assumption alphabet was fixed during learning
–  αA = (αM1 ∪ αP) ∩ αM2

!   [SPIN’06]: A subset alphabet

–  May be sufficient to prove the desired property

–  May lead to smaller assumption

!   How do we compute a good subset of the assumption alphabet?
!   Solution – iterative alphabet refinement

–  Start with small alphabet
–  Add actions as necessary
–  Discovered by analysis of counterexamples obtained from model checking

M1

M2

P

learning with alphabet refinement

1. Initialize Σ to subset of alphabet αA = (αM1 ∪ αP) ∩ αM2

2. If learning with Σ returns true, return true and go to 4. (END)

3. If learning returns false (with counterexample c), perform

extended counterexample analysis on c.

If c is real, return false and go to 4. (END)

If c is spurious, add more actions from αA to Σ and go to 2.

4. END

extended counterexample analysis

αA = (αM1 ∪ αP) ∩ αM2
Σ ⊆ αA is the current alphabet

〈c↑Σ〉 M1 〈P〉	
 〈c↑αA〉 M1 〈P〉	

Refiner: compare
c↑αA and t↑αA

Add actions to Σ
and restart learning

〈true〉 M2 〈Ai〉 L*

query

conjecture: Ai
false

c ↑ Σ

false + cex c

〈Ai〉 M1 〈P〉

true
c ↑ Σ

false
+ cex t

false

true

P holds

P violated

〈s〉 M1 〈P〉

alphabet refinement

Ordererr in

 out out in

Output
 send

ack

 out
 Input

 in

ack

 send

〈true〉 Output 〈Ai〉 false with c = 〈send, out〉

∑ = { out }
c↑Σ = 〈out〉

〈c↑Σ〉 Input 〈P〉 false with counterex. t = 〈out 〉

αA = { send, out, ack }

c↑αA = 〈send, out〉

〈c↑αA〉 Input 〈P〉 true

compare 〈out〉 with 〈send, out〉 add “send” to ∑

characteristics

!   Initialization of Σ
–  Empty set or property alphabet αP ∩ αA

!   Refiner
–  Compares t↑αA and c↑αA

–  Heuristics:

AllDiff adds all actions in the symmetric difference of the trace alphabets

Forward scans traces in parallel forward adding first action that differs

Backward symmetric to previous

!   Termination
–  Refinement produces at least one new action and the interface is finite

!   Generalization to n components
–  Through recursive invocation

!   See also learning with optimal alphabet refinement
–  Developed independently by Chaki & Strichman 07

implementation & experiments

!   Implementation in the LTSA tool
–  Learning using rules ASYM, SYM and CIRC

–  Supports reasoning about two and n components
–  Alphabet refinement for all the rules

!   Experiments
–  Compare effectiveness of different rules
–  Measure effect of alphabet refinement
–  Measure scalability as compared to non-compositional verification

!   Extensions for
–  SPIN
–  JavaPathFinder

case studies

!   Model of Ames K9 Rover Executive
–  Executes flexible plans for autonomy
–  Consists of main Executive thread and ExecCondChecker

thread for monitoring state conditions
–  Checked for specific shared variable: if the Executive reads its

value, the ExecCondChecker should not read it before the
Executive clears it

!   Model of JPL MER Resource Arbiter
–  Local management of resource contention between resource

consumers (e.g. science instruments, communication systems)
–  Consists of k user threads and one server thread (arbiter)
–  Checked mutual exclusion between resources

K9 Rover

MER Rover

results

!   Rule ASYM more effective than rules SYM and CIRC

!   Recursive version of ASYM the most effective
–  When reasoning about more than two components

!   Alphabet refinement improves learning based assume
guarantee verification significantly

!   Backward refinement slightly better than other refinement
heuristics

!   Learning based assume guarantee reasoning
–  Can incur significant time penalties
–  Not always better than non-compositional (monolithic) verification
–  Sometimes, significantly better in terms of memory

Case |A| Mem Time |A| Mem Time Mem Time

MER 2 40 8.65 21.90 6 1.23 1.60 1.04 0.04

MER 3 501 240.06 -- 8 3.54 4.76 4.05 0.111

MER 4 273 101.59 -- 10 9.61 13.68 14.29 1.46

MER 5 200 78.10 -- 12 19.03 35.23 14.24 27.73

MER 6 162 84.95 -- 14 47.09 91.82 -- 600

K9 Rover 11 2.65 1.82 4 2.37 2.53 6.27 0.015

analysis data

|A| = assumption size
Mem = memory (MB)
Time (seconds)
-- = reached time (30min) or memory limit (1GB)

ASYM ASYM + refinement Monolithic

end of part 1I

please ask LOTS of questions!

Automated
Component-Based

Verification

part III

Dimitra Giannakopoulou and Corina Păsăreanu
CMU / NASA Ames Research Center

example: autonomous rendezvous and docking

!   input provided as UML state-charts, properties of type:
–  “you need at least two operational sensors to proceed to next

mode”
–  “your state estimator will only return good values if it has good

readings from at least 2 sensors”
!   3 bugs detected
!   scaling achieved with compositional verification:

–  non-compositional verification runs out of memory after exploring >
13M states

–  compositional verification terminates successfully in secs. Analyzes
one component at a time. The largest assumption has 10 states and
the largest component has 5947 states (so largest state space
explored is less that 60K states, as opposed to 13M)

SPT
(star planet

tracker)

GPS

IN
(inertial

navigation)

DS
(docking sensor)

OrbitalState

Autonomous Rendez-Vous and Docking

structure

part 1 (Dimitra)
assume-guarantee reasoning
computing assumptions
learning assumptions
discussion

part 2 (Corina)
multiple components
alphabet refinement
case studies
discussion

lunch

part 3 (Dimitra)
component interfaces
compositional JavaPathfinfer
examples
discussion

part 4 (Corina)
reasoning about code
abstraction
related work
conclusion

recap in reverse order…

!  assume-guarantee reasoning
!  learning framework for 2 components
!  weakest assumption

assume-guarantee reasoning

1.  〈A〉 M1 〈P〉
2.  〈true〉 M2 〈A〉

〈true〉 M1 || M2 〈P〉

M2

M1

A

satisfies P?

reasons about triples:
〈A〉 M 〈P〉
is true if whenever M is part of a system that
satisfies A, then the system must also guarantee P

simplest assume-guarantee rule (ASYM):

 query c ↑αA

〈true〉 M2 〈Ai〉

learning assumptions for AG reasoning

L*

query: string s
〈s〉 M1 〈P〉

conjecture: Ai 〈Ai〉 M1 〈P〉

false+crex c c ↑αA

c ↑αA

false+crex c

true / false

true
P holds in M1 || M2

P violated in M1 || M2

true

false

true

1.  〈A〉 M1 〈P〉
2.  〈true〉 M2 〈A〉

〈true〉 M1 || M2 〈P〉

the weakest assumption

!   given component M, property P, and the interface ∑ of M
with its environment, generate the weakest environment
assumption WA such that: 〈WA〉 M 〈P〉 holds

!   weakest means that for all environments E:

〈true〉 M || E 〈P〉 IFF 〈true〉 E 〈WA〉

M

 P

WA

assumption generation [ASE’02]

STEP 1: composition, hiding,
minimization

property true!
(all environments)

STEP 2: backward propagation of
error along τ transitions

property false!
(all environments)

STEP 3: property extraction (subset
construction & completion) assumption

part III

!  assume-guarantee reasoning
!  learning framework for 2 components
!  weakest assumption WA

!  component interfaces / learning WA
!  compositional JavaPathFinder
!  examples and discussion

  beyond syntactic interfaces
(“open” file before “close”)

  document implicit assumptions

weakest assumption (WA):
  safe: accept NO illegal sequence

of calls
  permissive: accept ALL legal

sequences of calls

component interfaces

safety check

M0

Merror M1 M2

a

b
c

b

c

M0

A0

M1

A1

M2

A0

M1

A0

a

b

c

A1

a

b, c
A0

permissiveness check
M0

Merror M1 M2

a

b
c

b

M0

A0

M1

A1

M2

A0

M1

A0

a

b

c

A0 A1
b, c

Aerror
b, c

a

M2

Aerror

M1

Aerror

Merror

Aerror

c

b

b

a

permissiveness: the problem
M0

Merror M1 M2

a

b
c

b

M0

A0

M1

A1

M2

A1

a

b

c Merror

Aerror
b

A0 A1
a

Aerror

a b

b τ	

τ	

M1

Aerror

(queries)
should word w be included in L(A)?

(conjectures)
here is an A – is L(A) = U?
(is A safe and permissive?)

yes / no

yes!
no: word w should (not) be in L(A)

the oracle L* learner

queries (simulate / model check)

conjecture – safe (model check)

conjecture – permissive

learning interfaces

Alur et al, 2005, Henzinger et al, 2005

our approach (Giannakopoulou & Pasareanu, FASE 2009)

M0

A0

M1

A1

M2

A1

a

b

Merror

Aerror
b

τ	

M1

Aerror

model check for (Mi, Aerror)

query “a b”
reached (M1, Aerror) by “a b”

backtrack and continue search…
no (“a b” should not be in A)

invoke a model checker

within a model checker?

permissiveness check

MC: model check for (Mi, Aerror)
reached (Mi, Aerror) by trace t

backtrack and continue search
if (memoized(t) == no) // t is spurious

if (query(t) == yes)
return t to L* // not permissive

else // memoized(t) == yes or t not in memoized
model checker produces t

else restart at MC

example

 ack,out,send

 ack

 send out

 ack

 send

 send

 ack

 send

 out, send

Ordererr in

 out out in

 Input
 in

ack

 send

assumption learned for
AG reasoning weakest assumption

〈 ack, out 〉 ?

module M

Output
 send

ack

 out

complete module for permissiveness check

Ordererr in

 out out in

 Input
 in

ack

 send

 in

ack

 send
 Complete_Input

 in, ack
 in,
send

 send,
ack

 in, send, ack

•  queries performed on Input || Ordererr

•  safety checked on Input || Ordererr|| Aerr

•  permissiveness performed on
 Complete_Input || Ordererr|| Aerr

 check reachability of states:
 (sink, *, error) or (*, non error, error)

module M

〈 ack, out 〉: (sink, error, error)

 ack

 send

 out, send ack out

 Aerr

in summary…

resolve non-determinism
 dynamically & selectively

remember, it’s a heuristic

M0

A0

M1

A1

M2

A1

a b

Merror

Aerror

b

M1

Aerror

a

c

 query c ↑αA

〈true〉 M2 〈Ai〉

assume-guarantee reasoning

conjecture: Ai 〈Ai〉 M1 〈P〉

false+crex c

c ↑αA

false+crex c

true

P holds in M1 || M2

P violated in M1 || M2

true
false

only need permissiveness with respect to M2 !

L*

query: string s

true

assume-guarantee reasoning

JavaPathfinder

interface generation / discharge

UML statecharts

http://babelfish.arc.nasa.gov/trac/jpf
jpf-cv

UML framework in JPF

!   JPF supports model checking of
UML state-machines with an
approach that consists of three
steps:
–  translate the UML model into a

corresponding Java program,
using JPF’s state chart (sc)
extension and application model

–  choose model properties to
verify, and configure verification
tools accordingly

–  optionally provide a guidance
script that represents the
environment of the model
(external event sequence)

 package ICSETutorial;

import gov.nasa.jpf.sc.State;

public class Input extends State {

 class S0 extends State {

 public void input() {
 setNextState(s1);
 }
 } S0 s0 = makeInitial(new S0());

 class S1 extends State {

 public void send() {
 setNextState(s2);
 }
 } S1 s1 = new S1();

 class S2 extends State {

 public void acknowledge() {
 setNextState(s0);
 }
 } S2 s2 = new S2();
}

example

2 1

 input send

acknowledge

0

AG reasoning in JPF

JavaPathfinder
(CVState.AutomatonState)	

SCSafetyListener

SCSafetyAutomaton

assumptions

SCSafetyListener

SCSafetyAutomaton

!   choiceGeneratorAdvanced
−  if selected action leads assumption to error state then do

“vm.getSystemState().setIgnored(true)” (backtrack)

!   instructionExecuted
−  advance automaton & set CVState.AutomatonState

!   stateBacktracked
−  get CVState.AutomatonState

JavaPathfinder
(CVState.AutomatonState)	

properties

!   instructionExecuted
−  advance automaton & set CVState.AutomatonState
−  if automaton reaches error state, then check() returns false

!   stateBacktracked
−  get CVState.AutomatonState

SCSafetyListener

SCSafetyAutomaton

JavaPathfinder
(CVState.AutomatonState)	

interface generation in JPF

!  queries and assumption safety checks
–  same as assume-guarantee reasoning

!  assumption permissiveness check
–  requires special listener

conformance listener
!   executeInstruction

−  if instruction to be executed is assertion violation, then perform
“ti.skipInstruction()” (do not process exception) and
“vm.getSystemState().setIgnored(true)” (backtrack)

!   instructionExecuted
−  advance automaton & set CVState.AutomatonState
−  if automaton reaches error state, check memoized table (why?)
 if counterexample stored and spurious, backtrack
 else check() returns false

!   stateBacktracked
−  get CVState.AutomatonState

boolean done = false;
while (!done){
 counterexample = null;

 …

 SCConformanceListener assumption = new SCConformanceListener(
 new SCSafetyAutomaton(false, assume, alphabet_, "Assumption",
 CompleteModule , memoized_));

 JPF jpf = createJPFInstance(assumption, property, CompleteModule);
 jpf.run();

 Path jpfPath = assumption.getCounterexample();
 if (jpfPath != null){
 //nonerror in M & error in Aerr - this is what we are looking for

 counterexample = assumption.convert(jpfPath);
 if(query(counterexample)){ // cex is in L(A)
 done = true; // a real counterexample for L*
 } // otherwise you need to continue with your loop

 }else
 done = true; // interface is permissive

}

permissiveness check

 package ICSETutorial;

import gov.nasa.jpf.sc.State;
 import gov.nasa.jpf.cv.CVState;

public class InputWithProperty
extends CVState {

 class S0 extends State {

 public void input() {
 setNextState(s1);
 }

 public void output() {
 assert(false);
 }

 } S0 s0 = makeInitial(new S0());

 . . .
 }

Input component with Order Property:

input output example

S0 = (send -> S2
 | acknowledge -> S1),
S1 = (output -> S1
 | send -> S1
 | acknowledge -> S1),
S2 = (output -> S3
 | send -> S1),
S3 = (send -> S1
 | acknowledge -> S0).

example 2

!   tool: JavaPathfinder
!   UML statechart model of the

Ascent and EarthOrbit flight phases
of a spacecraft

!   properties:
–  “An event lsamRendezvous, which

represents a docking maneuver with
another spacecraft, fails if the LAS
(launch abort system) is still
attached to the spacecraft”

–  “Event tliBurn (trans-lunar interface
burn takes spacecraft out of the
earth orbit and gets it into transition
to the moon) can only be invoked if
EDS (Earth Departure Stage) rocket
is available”

example: crew exploration vehicle

 Assumption 1:

 lasJetisson

 lasJetisson
 lsamRendezvous

 Assumption 2:

 lsamRendezvous

tliBurn
 lsamRendezvous

generated interface assumptions encode Flight Rules in terms of events

results

conclusions
!   learning assumptions is not a panacea

–  may perform worse than monolithic verification
–  performs well when alphabets & assumptions are small

!   computed interfaces may not be permissive
–  in our studies interfaces were satisfactory
–  there is more to say about this in part IV

!   limited to statecharts
–  but wish to extend; it’s open source, help us!!!

!   got funding
–  so expect a lot of activity on jpf-cv over the next year

Automated
Component-Based

Verification

part IV

Dimitra Giannakopoulou and Corina Păsăreanu
CMU / NASA Ames Research Center

part IV

!  reasoning about code
!  introducing abstraction

!  to reason about very large or infinite state spaces

!  related approaches

reasoning about code

!   Does M1 || M2 satisfy P? Model check; build assumption A
!   Does C1 || C2 satisfy P? Model check; use assumption A

[ICSE’2004] – good results but may not scale
Solution: replace model checking with testing!

M1

C1

M2

C2

Design

Code

P A

A P

introducing abstraction…

!   apply predicate abstraction [Graf & Saidi, CAV 1997]
!   apply learning to abstracted components
!   use counterexamples to automatically refine abstractions as

needed, using CEGAR (Counter-example Guided Abstraction
Refinement) [Clarke et al., CAV 2000]

!   interfaces: novel combination of under- and over- approximations
with L* avoids exponentially expensive determinization step and
generates minimal and precise interfaces [CAV 2010]

!   implemented in ARMC model checker (and previously Magic)
!   successfully applied to several benchmarks (Java2SDK library

classes, OpenSSL)

CEGAR for compositional verification

!   CEGAR: counterexample guided abstraction
refinement – Clarke et al. 00
–  incremental construction of abstractions
–  abstractions are conservative
–  abstract counterexamples obtained may be

spurious (due to over-approximation)
–  spurious counterexamples are used for

abstraction refinement
!   two level compositional abstraction

refinement – Chaki et al. 03
–  analyze C1 || C2 || … || Cn ╞ P
–  build finite-state abstractions: A1, A2, … An
–  minimize: M1, M2, … Mn

–  analyze: M1 || M2 || … || Mn ╞ P ?
–  refine based on counterexamples

!   permissive interfaces – Henzinger et al. 05
–  uses CEGAR to compute interfaces

C

abstraction

A

model checking
A╞ P

counterexample
analysis

false

spurious

refine

true

real

C╞ P

C╞ P

CEGAR loop

!   Challenge: instead of learning A, build A as an abstraction of M2

!   build A as an abstraction of M2; 〈true〉 M2 〈A〉 holds by construction

!   check Premise 1: 〈A〉 M1 〈P〉
!   obtained counterexamples are analyzed and used to refine A
!   variant of CEGAR with differences:

–  use counterexample from M1 to refine abstraction of M2
–  A keeps information only about the interface (abstracts away the internal info)

!   implemented in LTSA; combined with alphabet refinement;
!   compares favorably with learning approach
!   [CAV’08]

1.  〈A〉 M1 〈P〉
2.  〈true〉 M2 〈A〉

3.  〈true〉 M1 || M2 〈P〉

assume-guarantee abstraction refinement (AGAR)

AGAR vs learning

compositional verification for C

C1||C2|=P

spurious

C1||C2 |= P

true

false

 counterexample
analysis

learning framework

predicate
abstraction

M1

C1

predicate
abstraction

M2

refine

!   Check composition of software C components
 C1||C2 |= P

C2

refine

spurious

interface generation for infinite-state components

Component
C

Predicate
abstraction

Cmust

• Finite under-approx
• Deterministic

Theorem:
An interface A permissive w.r.t C's must abstraction safe w.r.t C's
may abstraction and is safe and permissive for C.

Cmay

• Finite over-approx

Learn
Interface

Amust

• Safe
• Permissive

Check
Safety

Refine Return
Amust

cex no cex

interface generation for infinite-state components

!   conceptually simple and elegant
!   expensive learning restarts

!   need of tighter integration of abstraction refinement with L*
!   LearnReuse method

Query(σ, C)

1.  if checkSafe(σ,Cmust) != null
2.  return “no”
3.  cex = checkSafe(σ,Cmay)
4.  if cex == null
5.  return “yes”
6.  Preds = Preds U Refine(cex)
7.  Query(σ, C)

Conjecture : Oracle 1

1.  cex = checkSafe(A, Cmay)
2.  if cex == null
3.  invoke Oracle2
4.  If Query(cex, C) == “no”
5.  return cex to L*
6.  else
7.  goto 1

Conjecture : Oracle 2

1.  cex = checkPermissive(A, Cmust)
2.  if cex == null
3.  return A
4.  If Query(cex, C) == “yes”
5.  return cex to L*
6.  else
7.  goto 1

NASA case study

!   NASA CEV 1.5 EOR-LOR mission
!   26 methods

!   Only LearnReuse finished
!   74 predicates, 14 states
!   52 minutes

our previous work at a glance

  learning-based AG reasoning (TACAS 2003)
  recursive application of simple rule for reasoning about n > 2

components (FMSD 2009)
  symmetric and circular assume-guarantee rules (SAVCBS 2003,

FMSD 2009)
  assume-guarantee reasoning for code (ICSE 2004, SAVCBS

2005, IET Software 2009)
  learning with alphabet refinement (TACAS 2007)
  learning assumptions for interface automata (FM 2008)
  assume-guarantee abstraction refinement (CAV 2008)
  interface generation in JPF (FASE 2009)
  interface generation for large/infinite-state components (CAV

2010)

other related work

Henzinger et al, 2005
Alur et al, 2005 (1) Whaley et al, 2002

Tkachuk et al, 2003

Groce et al, 2002
Margaria et al, 2007

Ammons et al, 2002

Chen et al, 2009

Farzan et al, 2008

Gupta et al, 2007
Alur et al, 2005 (2)

Bollig et al, 2009

Chaki et al, 2005-2007
Cobleigh et al, 2006

(interfaces)

(L* for AG reasoning)

(L* for model extraction)
(L* for NFAs & liveness)

(L* for separating automata)

other related work
!   minimal separating automaton for disjoint languages L1 and L2

–  accept all words in L1

–  accept no words in L2

–  have the least number of states

!   assume-guarantee reasoning
–  minimal separating automaton for L(M2) and L(M1) ∩ L(coP)

!   algorithms
–  Gupta at al. 07: query complexity exponential in the size of the

minimal DFAs for the two input languages
–  Chen et al. 09: query complexity quadratic in the product of the sizes

of the minimal DFAs for the two input languages. Use 3 valued DFAs

!   compositional verification in symbolic setting (Alur et al. 05)
!   learning omega-regular languages for liveness (Farzan et al. 08)
!   learning non-deterministic automata (Bollig et al. 09)

thank you!

part IV

!  parts I – III: reasoning about finite-state models

!  reasoning about code
!  introducing abstraction

to reason about very large or infinite state spaces

!  related approaches

reasoning about code

!   Does M1 || M2 satisfy P? Model check; build assumption A
!   Does C1 || C2 satisfy P? Model check; use assumption A

[ICSE’2004] – good results but may not scale
Solution: replace model checking with testing! [IET Software 2009]

M1

C1

M2

C2

Design

Code

P A

A P

abstraction

!   Reduces large/infinite data domains into small/finite abstract
domains; e.g. replace int with {ZERO, POS, NEG}

!   Produces a finite state abstract model that operates on the
abstract domain

!   Abstraction maps
–  Concrete states to abstract states
–  Concrete transitions to abstract transitions

!   Framework of abstract interpretation

may and must abstraction

!   May abstraction produces a finite over-approximation
!   Must abstraction produces a finite under-approximation

must	 transi*on	 may	 transi*on	

Cmust	

	 	 	 C	
Cmay	

abstraction in compositional verification

!   apply (predicate) abstraction [Graf & Saidi, CAV 1997]
!   apply learning to abstracted components
!   use counterexamples to automatically refine abstractions/assumptions as

needed [Magic]

!   use abstraction refinement as an alternative to learning for building
assumptions [AGAR, CAV 2008]

!   interfaces: novel combination of under- and over- approximations with L*
avoids exponentially expensive determinization step and generates minimal and
precise interfaces [CAV 2010]

!   implemented in ARMC model checker
!   successfully applied to several benchmarks (Java2SDK library classes, OpenSSL)

CEGAR

!   CEGAR: counterexample guided
abstraction refinement [Clarke
et al. 00]
–  incremental construction of (may)

abstractions
–  abstract counterexamples obtained

may be spurious (due to over-
approximation)

–  spurious counterexamples are used
for abstraction refinement

C

abstraction

Cmay

model checking
Cmay╞ P

counterexample
analysis

false

spurious

refine

true

real

C╞ P

C╞ P

CEGAR loop 	 	 	 C	
Cmay	

CEGAR for compositional verification

!   two level compositional abstraction refinement –
Chaki et al. 03
–  analyze C1 || C2 || … || Cn ╞ P
–  build finite-state abstractions: A1, A2, … An
–  minimize: M1, M2, … Mn
–  analyze: M1 || M2 || … || Mn ╞ P ?
–  refine based on counterexamples

!   permissive interfaces – Henzinger et al. 05
–  uses CEGAR to compute interfaces

learning-based compositional verification for C code

C1||C2|=P

spurious

C1||C2 |= P

true

false

 counterexample
analysis

learning framework

predicate
abstraction

C1
may

C1

predicate
abstraction

C2
may

refine

!   Check composition of software C components C1||C2 |= P
!   C1, C2 are large/infinite state

C2

refine

spurious

!   Challenge: instead of learning A, build A as an abstraction of M2

1.  〈A〉 M1 〈P〉
2.  〈true〉 M2 〈A〉

3.  〈true〉 M1 || M2 〈P〉

assume-guarantee abstraction refinement (AGAR)

!   Challenge: instead of learning A, build A as an abstraction of M2

!   build A as an (may) abstraction of M2; 〈true〉 M2 〈A〉 holds by construction

!   check Premise 1: 〈A〉 M1 〈P〉
!   obtained counterexamples are analyzed and used to refine A
!   variant of CEGAR with differences:

–  use counterexample from M1 to refine abstraction of M2
–  A keeps information only about the interface (abstracts away the internal info)

!   implemented in LTSA; combined with alphabet refinement;
!   compares favorably with learning approach
!   [CAV’08]

1.  〈A〉 M1 〈P〉
2.  〈true〉 M2 〈A〉

3.  〈true〉 M1 || M2 〈P〉

assume-guarantee abstraction refinement (AGAR)

AGAR vs learning

	 	 	 L(A)	

interface generation for infinite-state components

!   Use predicate abstraction to build may and must abstractions of
component C

!   Lsafe(C)=Lerr(C)
Interface A is safe: L(A) ⊆ Lsafe(C)
Interface A is permissive: Lsafe(C) ⊆ L(A)

!   Theorem:
An interface A permissive w.r.t. C's must abstraction and safe w.r.t C's may

abstraction is safe and permissive for C.

Cmust	 ,	 Lerr

(Cmust)	

	 	 	 C,	 Lerr(C)	
Cmay,Lerr(Cmay)	

Lsafe(Cmay)	

	 	 	 Lsafe(C)	
Lsafe(Cmust)	

	 	 	 L(A)	

interface generation for infinite-state components

Predicate
abstraction

Learn Interface

Check
Safety

Refine
cex

no cex

Component
C

Cmust

Finite under-approx
Deterministic

Cmay

Finite over-approx

Amust

Safe
Permissive

Return
Amust

Correctness:
If algorithm terminates then the returned interface A is safe and permissive for C.

interface generation for infinite-state components

!   conceptually simple and elegant
!   expensive learning restarts

!   need of tighter integration of abstraction refinement with L*
!   LearnReuse method

Query(σ, C)

1.  if checkSafe(σ,Cmust) != null
2.  return “no”
3.  cex = checkSafe(σ,Cmay)
4.  if cex == null
5.  return “yes”
6.  Preds = Preds U Refine(cex)
7.  Query(σ, C)

Gives answers consistent with C

Cmust	 ,	 Lerr

(Cmust)	

	 	 	 C,	 Lerr(C)	
Cmay,Lerr(Cmay)	

Conjecture : Oracle 1

1.  cex = checkSafe(A, Cmay)
2.  if cex == null
3.  invoke Oracle2
4.  If Query(cex, C) == “no”
5.  return cex to L*
6.  else
7.  goto 1

Conjecture : Oracle 2

1.  cex = checkPermissive(A, Cmust)
2.  if cex == null
3.  return A
4.  If Query(cex, C) == “yes”
5.  return cex to L*
6.  else
7.  goto 1

NASA case study

!   NASA CEV 1.5 EOR-LOR mission
!   26 methods

!   Only LearnReuse finished
!   74 predicates, 14 states
!   52 minutes

our previous work at a glance

  learning-based AG reasoning (TACAS 2003)
  recursive application of simple rule for reasoning about n > 2

components (FMSD 2009)
  symmetric and circular assume-guarantee rules (SAVCBS 2003,

FMSD 2009)
  assume-guarantee reasoning for code (ICSE 2004, SAVCBS

2005, IET Software 2009)
  learning with alphabet refinement (TACAS 2007)
  learning assumptions for interface automata (FM 2008)
  assume-guarantee abstraction refinement (CAV 2008)
  interface generation in JPF (FASE 2009)
  interface generation for large/infinite-state components (CAV

2010)

other related work

Henzinger et al, 2005
Alur et al, 2005 (1) Whaley et al, 2002

Tkachuk et al, 2003

Groce et al, 2002
Margaria et al, 2007

Ammons et al, 2002

Chen et al, 2009

Farzan et al, 2008

Gupta et al, 2007
Alur et al, 2005 (2)

Bollig et al, 2009

Chaki et al, 2005-2007
Cobleigh et al, 2006

(interfaces)

(L* for AG reasoning)

(L* for model extraction)
(L* for NFAs & liveness)

(L* for separating automata)

other related work
!   minimal separating automaton for disjoint languages L1 and L2

–  accept all words in L1

–  accept no words in L2

–  have the least number of states

!   assume-guarantee reasoning
–  minimal separating automaton for L(M2) and L(M1) ∩ L(coP)

!   algorithms
–  Gupta at al. 07: query complexity exponential in the size of the

minimal DFAs for the two input languages
–  Chen et al. 09: query complexity quadratic in the product of the sizes

of the minimal DFAs for the two input languages. Use 3 valued DFAs

!   compositional verification in symbolic setting (Alur et al. 05)
!   learning omega-regular languages for liveness (Farzan et al. 08)
!   learning non-deterministic automata (Bollig et al. 09)

conclusion

!   Compositional verification and assume-guarantee reasoning
!   Techniques for automatic assumption generation and

compositional verification
–  Finite state systems and safety properties

!   Data abstraction to deal with very large/infinite state spaces
!   Techniques are promising in practice
Future:
!   Techniques for discovering good system decompositions
!   Parallelization for increased scalability
!   Beyond safety: liveness, timed properties, probabilistic

reasoning
!   Run-time analysis
!   More?

thank you!

